skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "HARIZANOV, V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Genova, D.; Kari, J. (Ed.)
    Generically computable sets, as introduced by Jockusch and Schupp, have been of great interest in recent years. This idea of approximate computability was motivated by asymptotic density problems studied by Gromov in combinatorial group theory. More recently, we have defined notions of generically computable structures, and studied in particular equivalence structures and injection structures. A structure is said to be generically computable if there is a c.e. substructure defined on an asymptotically dense set, where the functions are computable and the relations are computably enumerable. It turned out that every equivalence structure has a generically computable copy, whereas there is a non-trivial characterization of the injection structures with generically computable copies. In this paper, we return to group theory, as we explore the generic computability of Abelian groups. We show that any Abelian p-group has a generically computable copy and that such a group has a Σ2-generically computably enumerable copy if and only it has a computable copy. We also give a partial characterization of the Σ1-generically computably enumerable Abelian p-groups. We also give a non-trivial characterization of the generically computable Abelian groups that are not p-groups. 
    more » « less